آزمون‌ بازتولید رفتار

مقدمه

هنگامی که آزمون‌های تایید ساختار با موفقیت انجام شد، آزمون بعدی آزمون‌های الگوی رفتاری است تا‌اندازه گیری شود که مدل با چه دقتی می‌تواند رفتار واقعی سیستم را بازتولید کند. آزمون‌های بازتولید رفتار مقایسه می‌کنند که چگونه رفتار تولید شده توسط مدل با رفتار مشاهده‌شده در سیستم واقعی مطابقت دارد. آزمون‌های بازتولید رفتار شامل تولید علائم، تولید فرکانس، فازبندی نسبی، حالت چندگانه و ویژگی رفتاری است. آزمون‌های بازتولید رفتار زمانی بسیار قانع‌کننده‌تر می‌شوند که بتوان دلیل قبولی این آزمون‌ها را نشان داد.

ابزارهای زیادی برای ارزیابی مدل برای بازتولید رفتار سیستم در دسترس هستند. رایج ترین تکنیک‌ها آمار توصیفی برای‌اندازه گیری تناسب نقطه به نقطه است. معیارهای نقطه به نقطه مقداری از خطا را بین یک سری داده واقعی و خروجی مدل در هر نقطه‌ای که داده وجود دارد را محاسبه می‌کند و سپس نوعی میانگین را در افق زمانی مربوطه گزارش می‌دهد. متداول ترین معیار برازش، ضریب تعیین (R2) است. این ضریب کسری از واریانس در داده‌های توضیح داده شده توسط مدل را‌اندازه می‌گیرد. میانگین خطای مطلق (MAE)، میانگین درصد مطلق خطا (MAPE) و ریشه میانگین مربع خطا (RMSE) همگی معیارهایی از میانگین خطای بین مقادیر شبیه سازی شده و واقعی را ارائه می‌دهند. با این حال، به جای پیش بینی نقطه، باید بر الگو تأکید شود.

در ادبیات مدل‌سازی و شبیه‌سازی، طیف گسترده‌ای از آزمون‌ها شامل مقایسه نقطه به نقطه رفتار مدل‌سازی شده در مقابل مشاهده‌شده وجود دارد. علی‌رغم پذیرش گسترده، چنین آزمون‌هایی که شامل معیارهای خوبی تناسب نقطه به نقطه هستند، معمولاً برای مدل‌های پویایی سیستم‌های اجتماعی-اقتصادی کمتر مناسب هستند.

 

هدف مدل

  • آیا مدل رفتار مورد علاقه در سیستم را (از لحاظ کیفی و کمی) بازتولید می کند؟
    آیا به طور درونزا علائم دشواری ایجاد انگیزه در مطالعه را ایجاد می کند؟
    آیا مدل حالت های مختلف رفتار مشاهده شده در سیستم واقعی را ایجاد می کند؟
    آیا فرکانس ها و روابط فاز بین متغیرها با داده ها مطابقت دارند؟

 

ابزارها و روش‌های اجرایی

  • محاسبه معیارهای آماری مطابقت بین مدل و داده:
    • آمار توصیفی (به عنوان مثال، R2، MAE)؛
    • روش های حوزه زمانی (به عنوان مثال، توابع خودهمبستگی)؛
    • روش های حوزه فرکانس (به عنوان مثال، تجزیه و تحلیل طیفی)؛
    • بسیاری دیگر.
  • خروجی مدل و داده‌ها را از نظر کیفی مقایسه کنید، از جمله:
    • حالت‌های رفتار،
    • شکل متغیرها،
    • عدم تقارن،
    • دامنه‌های نسبی و فازبندی،
    • رویدادهای غیرمعمول.
  • پاسخ مدل به تست ورودی ها، شوک ها و نویز را بررسی کنید.

 

مثال: بازتولید رفتار

 

مقدمه

دومین آزمون تصدیق ساختار، آزمون تأیید پارامتر است و به معنای ارزیابی پارامترهای ثابت در برابر دانش سیستم‌های واقعی از نظر مفهومی و عددی است. هر ثابت (و متغیر) باید معنا و مصداق واقعی داشته باشد. برای این کار می‌توان از تخمین آماری استفاده کرد و یا از تخمین قضاوتی بهره برد. ممکن است برای تخمین پارامترها از اقتصادسنجی، سری زمانی یا روش‌های دیگر نیز استفاده کرد.

انتخاب مقادیر اولیه مناسب برای معادلات متغیر حالت، مقادیر ثابت‌ها و توابع جدول ارتباط مستقیمی با منطق مدل دارد و مقادیر باید بر اساس داده‌های منتشر شده از منابع معتبر باشد. نرم‌افزارهای کامپیوتری اکنون برای تخمین و توجیه مقادیر دقیق پارامترها به گونه‌ای که بتوانند رفتار مورد انتظار سیستم را تولید کنند در دسترس هستند. راستی‌آزمایی یا تصدیق ساختار و تصدیق پارامتر به هم مرتبط هستند و هر دو آزمون هدف اصلی یکسانی دارند.

 

هدف مدل

  • آیا مقادیر پارامترها با دانش توصیفی و عددی مربوط به سیستم سازگار است؟
  • آیا همه پارامترها مشابه دنیای واقعی دارند؟

 

ابزارها و روش‌های اجرایی

  • از روش‌های آماری برای تخمین پارامترها استفاده کنید (گستره وسیعی از روش‌های موجود).
  • از آزمون‌های مدل جزئی برای کالیبره کردن زیرسیستم‌ها استفاده کنید.
  • از روش‌های قضاوتی مبتنی بر مصاحبه، نظر متخصص، گروه‌های متمرکز، مطالب آرشیوی، تجربه مستقیم و غیره استفاده کنید.
  • برای تخمین روابط در مدل‌های بزرگتر ، زیرمدل‌های تفکیک‌شده را توسعه دهید.

قبل از تصمیم گیری در مورد اینکه یک پارامتر چگونه باید تخمین زده شود یا اینکه آیا مقدار آن معقول است، مطمئن شوید که هر ثابت (و متغیر) معنای واقعی و واضحی دارد. سپس باید تصمیم بگیرید که چگونه مقادیر هر پارامتر را تخمین بزنید. روش اصلی عبارت است ازتخمین آماری از داده‌های عددی یا تخمین قضاوتی است.

برآورد مقادیر پارامترها از داده‌های عددی به‌ویژه  از روش اقتصادسنجی بسیار رایج است. به مدل‌سازان دینامیک سیستم توصیه می‌شود که اقتصادسنجی و سایر رویکردهای تخمین پارامترها را مطالعه کنند. دانستن اینکه تکنیک‌های رگرسیون چگونه کار می‌کنند، فرضیه‌ها و محدودیت‌های آنها چیست و این که هر ابزاری چه زمانی مناسب است برای مدلسازان دینامیک امری ضروری است. فرضیه‌ها، مفروضاتی در مورد داده‌ها و مدل هستند که برای استفاده از تکنیک برآورد جهت ارائه نتایج قابل اعتماد و دقیق نیاز می‌باشد. رایج ترین روش، رگرسیون چندگانه با حداقل مربعات معمولی (OLS)، اغلب در مدل‌های دینامیکی مناسب نیست. برآوردهای OLS در حضور همخطی (جایی که متغیرهای سمت راست به طور متقابل همبستگی دارند)، خودهمبستگی (که متغیر وابسته به مقادیر گذشته خودش بستگی دارد، یعنی جایی که بازخورد وجود دارد) و ناهمسانی (جایی که در آن واریانس متغیرها در سراسر نمونه ثابت نیست) دقیق نیستند. ما برای این کار از سایر روش‌های برآورد ساده تر و قوی‌تر در دسترس استفاده می‌کنیم مانند حداکثر احتمال maximum likelihood و GLS (حداقل مربعات تعمیم‌یافته) تا روش‌های پیچیده‌ای مانند فیلتر کالمن. هر روشی نقاط قوت و ضعف خود را دارد. باید ساده‌ترین روشی را انتخاب کرد که با ساختار بازخورد مدل و ویژگی‌های آماری داده‌ها مناسب باشد. در عین حال، محدودیت‌های موجود بر روی داده‌های عددی به این معنی است که اغلب غیرممکن است که بتوان همه پارامترهای یک مدل را تخمین زد.

همچنین برای تخمین قضاوتی پارامترها باید استفاده از نظرات متخصصین، مطالب بایگانی، تجربه مستقیم، و روش‌های دیگر را توسعه داد.  پارامترها را نیز می‌توان با ایجاد یک مدل فرعی تفکیک شده تخمین زد. در عمل، روش‌های آماری و قضاوتی با هم استفاده می‌شوند. دانش واقعی سیستم، محدوده قابل قبول را برای بسیاری از پارامترها محدود می‌کند. تخمین آماری روشی برای کنترل و چک کردن برآوردهای قضاوتی فراهم می‌کند.

در یک مدل بزرگ معمولاً برآورد همه پارامترهای بحرانی به طور همزمان غیرعملی است. حتی در صورت امکان، تخمین همزمان می‌تواند منجر به مشکلاتی شود، زیرا مدل‌های بزرگ اغلب کمتر از حد تصور امکان تعریف جزییات را دارند (به این معنی که حتی یک مجموعه از مقادیر پارامترها نمی‌تواند به شکل مناسبی نماینده تمام داده‌های جامعه باشد. در این موارد برآوردهای قضاوتی مبتنی بر دانش سیستم در انتخاب پارامترها معقول است.

برای تخمین پارامترها می‌توان در سطح جزئی از مدل یا در سطح زیر سیستم نیز استفاده کرد. همانند آزمون مدل جزئی برای بررسی منطقی بودن، مدل ساز یک ساختار کلیدی یا قانون تصمیم را به صورت مجزا تحلیل کرده و حلقه‌های بازخوردی آن را به کل مدل تعمیم می‌دهد. در این رویکرد ورودی‌های هر قاعده تصمیم‌گیری یا فرمول‌بندی براساس داده‌های تاریخی واقعی تعریف می‌شوند و پارامترها (به صورت قضاوتی یا رسمی) تعیین می‌شوند تا خروجی زیرسیستم به بهترین وجه با داده‌های تاریخی مطابقت پیدا کند.

نکته مهم آن است که معنا دار بودن آماری پارامترها، تایید کننده صحت رابطه نیست. معنا دار بودن آماری نشان می‌دهد که یک معادله چقدر با داده‌های مشاهده شده مطابقت دارد. این نشان نمی‌دهد که آیا روابط علی مطابق با واقعیات دنیای واقعی وجود دارد یا خیر. یک رابطه آماری معنی دار بین متغیرها فقط نشان می‌دهد که آنها همبستگی بالایی دارند و احتمالاً همبستگی ظاهری نتیجه تصادفی نیست. ادعای علّی بودن یک رابطه، یک قضاوت ارزشی است که باید با در نظر گرفتن تمام شواهد، عددی و کیفی انجام شود.

معنادار بودن آماری به عنوان آزمون صحه گذاری مدل در رد معادلات توصیف کننده روابط هم کاربرد دارد. اگرچه دلایل مختلفی وجود دارد که ممکن است یک رابطه از نظر آماری معنا دار نباشد، برای مثال داده‌های بسیار کمی وجود داشته باشد یا تنوع داده‌ها کافی نباشد. هنگامی که دانش مستقیم از سیستم نشان می‌دهد که یک رابطه واقعی و مهم است، باید آن را به رسمیت شناخت و برای تخمین مقادیر از قضاوت استفاده کرد.

 

مثال: برآورد آماری متغیرهای نرم

فرض کنید در یک سیستم خدماتی به دنبال تعیین پارامترهای کیفیت خدمات هستیم. می‌توانیم زمان اختصاص داده شده به هر مشتری را از طریق داده‌های گذشته و به شکل آماری برآورد کنیم. طبیعی است که این زمان یک متغیر تصادفی است. و زمان صرف شده برای هر مشتری دقیقا یکسان نیست. طبیعتا زمان صرف شده با هر مشتری با قضاوت مشتریان در مورد کیفیت خدمات ارتباط زیادی دارد. اما نکته قابل تامل این است که زمانی که بار کاری بالا می‌رود زمان صرف شده و در نتیجه کیفیت خدمات کاهش می‌یابد و این تبدیل به عادت می‌شود در نتیجه هنگامی که حجم کاری هم کم می‌شود ممکن است زمان صرف شده برای مشتری افزایش نیابد. بنابراین این داده‌ها نامتقارن هستند. تحلیل بیشتر ممکن است نشان دهد که سازمان هیچ ابزاری برای نظارت بر رضایت مشتری و بازخورد آن به مدیران ندارد. هر زمان که بار کاری زیاد می‌شد، کارگران زمان صرف شده با هر مشتری را کاهش می‌دادند تا کارهای عقب مانده را جبران کنند. در این صورت مدیران بدون داشتن روشی برای اندازه گیری کاهش رضایت مشتران ممکن است کاهش زمان و در نتیجه افت کیفیت را به عنوان بهبود بهره وری تفسیر کنند. بنابراین برآورد آماری ترکیبی از روش‌های تخمین پارامترهای به شیوه آماری و قضاوتی، کار میدانی و تجزیه و تحلیل داده‌های تاریخی، درک دقیق تر و مطمئن تری از پویایی سازمان نسبت به هر روش به تنهایی است.

 

مثال: توسعه یک زیرمدل

گاهی تخمین پارامترهای مدل کار بسیار سختی خواهد بود. هم به این دلیل که به دلیل گستردگی فعالیت‌ها جمع آوری داده‌ها ممکن است غیر ممکن باشد و یا پیشینه تاریخی از آن پارامتر وجود نداشته باشد. بنابراین می‌توانیم مدل را در یک سطح کوچک که می‌تواند محدودیت جغرافیایی، دامنه فعالیت، کارهای محدودتر، مشتریان هدف و یا غیره باشد طراحی می‌کنیم و پارامترهای مدل را برآورد می‌کنیم و سپس با توجه به خطها آن را به کل تعمیم می‌دهیم.

بینش‌های مرتبط

ازمون و اعتبار سنجی

آزمون پیش بینی رفتار تغییر ...

آزمون پیش‌بینی رفتار تغییر یافته نشان می‌دهد که در صورت تغییر یک ...
ازمون و اعتبار سنجی

آزمون بازتولید رفتار

آزمون‌های بازتولید رفتار مقایسه می‌کنند که چگونه رفتار تولید شده توسط مدل ...
ازمون و اعتبار سنجی

آزمون‌های رفتار مدل

دومین مرحله مهم در اعتبارسنجی مدل‌های دینامیک سیستم، آزمون‌های اعتبار رفتار مدل ...
ازمون و اعتبار سنجی

آزمون حساسیت سیاست

محققان و تصمیم گیرندگان باید تصمیم خود را در مورد اینکه کجا باید تلاش ...

سیستم

پویایی سیستم

امکان ارسال دیدگاه وجود ندارد!